Performs parameter estimation by fitting model simulations to observed data. Supports customizable optimization and confidence interval methods.
Active bindings
simulationsA named list of
Simulationobjects, keyed by the IDs of their root containers.parametersA list of
PIParameters, each representing a grouped set of model parameters to be optimized (read-only).configurationA
PIConfigurationobject controlling algorithm, CI estimation, and objective function options.outputMappingsA list of
PIOutputMappingobjects mapping observed datasets to simulated outputs.
Methods
Method new()
Initializes a ParameterIdentification instance.
Usage
ParameterIdentification$new(
simulations,
parameters,
outputMappings,
configuration = NULL
)Arguments
simulationsA
Simulationor list ofSimulationobjects to be used for parameter estimation. Each simulation must contain the model parameters specified inparameters. Useospsuite::loadSimulation()to load simulation files.parametersA
PIParametersor list ofPIParametersobjects specifying the model parameters to optimize. EachPIParametersobject may group one or more underlying model parameters. SeePIParametersfor details.outputMappingsA
PIOutputMappingor list ofPIOutputMappingobjects mapping model outputs (represented byQuantityobjects) to observed data. #' SeePIOutputMappingfor details.configuration(Optional) A
PIConfigurationobject specifying algorithm, CI method, and objective function settings. Defaults to a new configuration if omitted. SeePIConfigurationfor configuration options.
Method run()
Runs parameter identification using the configured optimization
algorithm. Returns a structured piResultsobject containing estimated
parameters, diagnostics, and (optionally) confidence intervals.
Returns
A PIResult object containing the optimization results.
Estimate Confidence Intervals
Method estimateCI()
Computes confidence intervals for the optimized parameters
using the method defined in the associated PIConfiguration. Intended
for advanced use when autoEstimateCI was set to FALSE during the
initial run.
Returns
The same PIResult object returned by the run() method,
updated to include confidence interval estimates.
Plot Parameter Estimation Results
Method plotResults()
Re-runs model simulations using the current or specified parameter values and generates plots comparing predictions to observed data.
Arguments
parOptional parameter values for simulations, in the order of
ParameterIdentification$parameters. Use current values ifNULL.
Returns
A list of ggplot2 plots (one per output mapping), showing:
Individual time profiles
Observed vs. simulated values
Residuals vs. time Perform a Parameter Grid Search
Generates a grid of parameter combinations, computes the OFV for each, and optionally sets the best result as the starting point for s subsequent optimization.
Note: The resulting grid can be used to explore the parameter space or initialize better starting values.
Method gridSearch()
Usage
ParameterIdentification$gridSearch(
lower = NULL,
upper = NULL,
logScaleFlag = FALSE,
totalEvaluations = 50,
setStartValue = FALSE
)Arguments
lowerNumeric vector of parameter lower bounds, defaulting to
PIParameterminimum values.upperNumeric vector of parameter upper bounds, defaulting to
PIParametermaximum values.logScaleFlagLogical scalar or vector; determines if grid points are spaced logarithmically. Default is
FALSE.totalEvaluationsInteger specifying the total grid points. Default is 50.
setStartValueLogical. If
TRUE, updatesPIParameterstarting values to the best grid point. Default isFALSE.
Method calculateOFVProfiles()
Usage
ParameterIdentification$calculateOFVProfiles(
par = NULL,
boundFactor = 0.1,
totalEvaluations = 20
)Arguments
parNumeric vector of parameter values, one for each parameter. Defaults to current parameter values if
NULL, invalid or mismatched.boundFactorNumeric value. A value of 0.1 means
loweris 10% belowparandupperis 10% abovepar. Default is0.1.totalEvaluationsInteger specifying the total number of grid points across each parameter profile. Default is 20.
Method print()
Prints a summary of ParameterIdentification instance.