Extract aggregated simulated data
Source:R/utilities-plotting.R
dot-extractAggregatedSimulatedData.RdExtract aggregated simulated data
Arguments
- simData
A data frame with simulated data from
DataCombined$toDataFrame().- aggregation
The type of the aggregation of individual data. One of
quantiles(Default),arithmeticorgeometric(full list inospsuite::DataAggregationMethods). Will replaceyValuesby the median, arithmetic or geometric average and add a set of upper and lower bounds (yValuesLowerandyValuesHigher).- ...
Arguments passed on to
.normRangensdoptional argument defining the number of standard deviation to add and substract to the mean
- quantiles
A numerical vector with quantile values (Default:
c(0.05, 0.50, 0.95)) to be plotted. Ignored ifaggregationis notquantiles.
Details
The simulated values will be aggregated across individuals for each time point.
For aggregation = quantiles (default), the quantile values defined in the
argument quantiles will be used. In the profile plot, the middle value
will be used to draw a line, while the lower and upper values will be used
as the lower und upper ranges. For aggregation = arithmetic, arithmetic
mean with arithmetic standard deviation (SD) will be plotted. Use the
optional parameter nsd to change the number of SD to plot above and below
the mean. For aggregation = geometric, geometric mean with geometric
standard deviation (SD) will be plotted. Use the optional parameter nsd to
change the number of SD to plot above and below the mean.
See also
Other utilities-plotting:
.addMissingGroupings(),
.convertGeneralToSpecificPlotConfiguration(),
.createAxesLabels()
Examples
# let's create a data frame to test this function
df <- dplyr::tibble(
xValues = c(
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5
),
yValues = c(
0,
0.990956723690033, 0.981773018836975, 0.972471475601196, 0.963047087192535,
0.953498184680939, 0, 0.990953505039215, 0.981729507446289, 0.97233647108078,
0.962786376476288, 0.953093528747559, 0, 0.990955889225006, 0.981753170490265,
0.972399413585663, 0.962896287441254, 0.953253626823425, 0, 0.990950107574463,
0.981710314750671, 0.972296476364136, 0.962724387645721, 0.953009009361267,
0, 0.261394888162613, 0.266657412052155, 0.27151620388031, 0.275971591472626,
0.280027687549591, 0, 0.26139160990715, 0.266613900661469, 0.271381109952927,
0.275710910558701, 0.279623001813889, 0, 0.261393994092941, 0.266637593507767,
0.271443992853165, 0.275820910930634, 0.279783099889755, 0, 0.261388212442398,
0.266594797372818, 0.27134120464325, 0.275649011135101, 0.279538512229919
),
group = c(rep("Stevens 2012 solid total", 24), rep("Stevens 2012 solid distal", 24)),
name = group
)
# raw data
df
#> # A tibble: 48 × 4
#> xValues yValues group name
#> <dbl> <dbl> <chr> <chr>
#> 1 0 0 Stevens 2012 solid total Stevens 2012 solid total
#> 2 1 0.991 Stevens 2012 solid total Stevens 2012 solid total
#> 3 2 0.982 Stevens 2012 solid total Stevens 2012 solid total
#> 4 3 0.972 Stevens 2012 solid total Stevens 2012 solid total
#> 5 4 0.963 Stevens 2012 solid total Stevens 2012 solid total
#> 6 5 0.953 Stevens 2012 solid total Stevens 2012 solid total
#> 7 0 0 Stevens 2012 solid total Stevens 2012 solid total
#> 8 1 0.991 Stevens 2012 solid total Stevens 2012 solid total
#> 9 2 0.982 Stevens 2012 solid total Stevens 2012 solid total
#> 10 3 0.972 Stevens 2012 solid total Stevens 2012 solid total
#> # ℹ 38 more rows
# aggregated data
ospsuite:::.extractAggregatedSimulatedData(df)
#> group name xValues yValuesLower
#> <char> <char> <num> <num>
#> 1: Stevens 2012 solid total Stevens 2012 solid total 0 0.0000000
#> 2: Stevens 2012 solid total Stevens 2012 solid total 1 0.9909506
#> 3: Stevens 2012 solid total Stevens 2012 solid total 2 0.9817132
#> 4: Stevens 2012 solid total Stevens 2012 solid total 3 0.9723025
#> 5: Stevens 2012 solid total Stevens 2012 solid total 4 0.9627337
#> 6: Stevens 2012 solid total Stevens 2012 solid total 5 0.9530217
#> 7: Stevens 2012 solid distal Stevens 2012 solid distal 0 0.0000000
#> 8: Stevens 2012 solid distal Stevens 2012 solid distal 1 0.2613887
#> 9: Stevens 2012 solid distal Stevens 2012 solid distal 2 0.2665977
#> 10: Stevens 2012 solid distal Stevens 2012 solid distal 3 0.2713472
#> 11: Stevens 2012 solid distal Stevens 2012 solid distal 4 0.2756583
#> 12: Stevens 2012 solid distal Stevens 2012 solid distal 5 0.2795512
#> yValues yValuesHigher
#> <num> <num>
#> 1: 0.0000000 0.0000000
#> 2: 0.9909547 0.9909566
#> 3: 0.9817413 0.9817700
#> 4: 0.9723679 0.9724607
#> 5: 0.9628413 0.9630245
#> 6: 0.9531736 0.9534615
#> 7: 0.0000000 0.0000000
#> 8: 0.2613928 0.2613948
#> 9: 0.2666257 0.2666544
#> 10: 0.2714126 0.2715054
#> 11: 0.2757659 0.2759490
#> 12: 0.2797031 0.2799910